

Electric Vehicle Infrastructure

Senator Heinrich's Renewable Energy Summit Albuquerque, NM Convention Center August 5th, 2019

Jesse Bennett

National Renewable Energy Lab Researcher - Electrical Engineer jbennett@nrel.gov

Choose vehicles and technology.

> **LSEV PHEV BEV**

Choose EVSE type and quantity.

> SAE Level 1 SAE Level 2 CHAdeMO

Determine necessary upgrades.

> Service Panel Circuit Breakers

Contact utility rep regarding new load.

> **Grid impacts** Service voltage Transformer

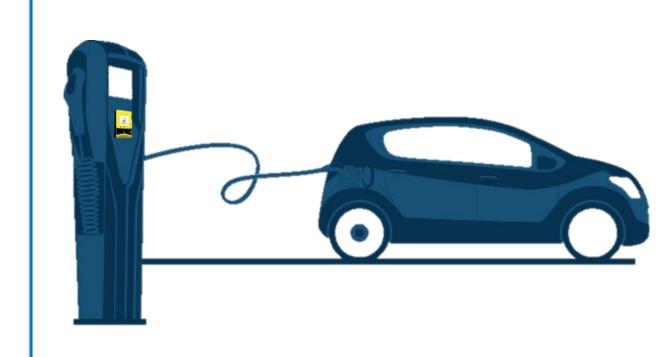
Install new infrastructure.

Breakers Conduit/conductors **EVSE**

Electric Vehicle Supply Equipment (EVSE) standards and performance metrics

- How do I select the best charger for my application?
 - Level 1, Level 2, DCFC
 - Compare recharge times

Vehicles and EVSE


Industry Standards

o SAE

- J1772
 - AC Level 1 and Level 2
 - DC Level 1 and Level 2
- J2954
 - Wireless Charging
- J3068
 - Three Phase Charging
- J3105
 - Mechanized Coupler Charging

o **CHAdeMO**

- IEEE 2030.1.1
 - DCFC

Vehicles and EVSE

SAE J1772 and CHAdeMO

SAE Provides various designs for both home and public charging

DCFC and CHAdeMO primarily for commercial use and long distance travel

Charging Level	Input Voltage (V)	Output Voltage (V)	Max Current (A)	Max Power (kW)
AC 1	120	120	16	1.9
AC 2	208-240	208-240	80	19.2
DC 1	208-600*	50-1,000	80	80
DC 2	208-600*	50-1,000	400	400
CHAdeMO	120-600	50-500	400	200

^{*}AC or DC input voltage

EVSE Options

Level 2 Wall Mount, DCFC Pedestal, and Overhead Pantograph

Electric Vehicle Supply Equipment

Charging Comparison

- Chevrolet Volt
 - 18.4 kWh/8.9 gal
 - 53/420 mi
- Chevrolet Bolt
 - 60 kWh
 - 238 mi

	Charging	Chevrolet Volt (PHEV)		Chevrolet Bolt (BEV)	
EVSE Type	Power (kW)	Rate (mi/hr)	Recharge Time (hrs)	Rate (mi/hr)	Recharge Time (hrs)
Level 1	1.8	5.2	10.2	7.1	33.3
Level 2	7.2*	10.4	5.1	28.7	8.3
DCFC	50**	N/A	N/A	198.3	1.2

^{*} Volt: max 3.6 kW AC charging, Bolt: max 7.2 kW AC charging

^{**}Volt: no DCFC, Bolt: max 50 kW DCFC (SAE only)

Equipment and considerations necessary to power to EVSE

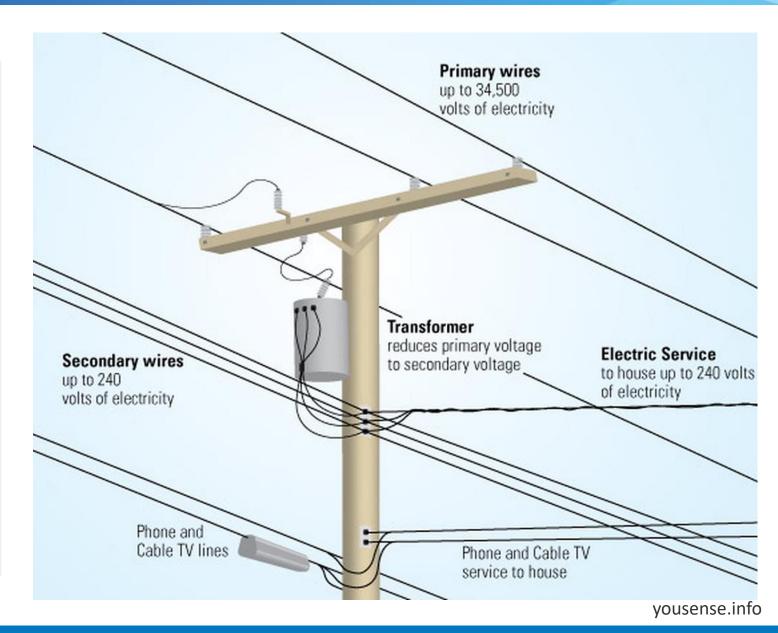
- What equipment/upgrades will I need?
 - Electric service impacts
 - Service panel, circuit breakers, conduit raceway, wiring

Electric Service Equipment

Primary Lines:

 Conductor lines carrying energy throughout the distribution circuit at medium voltage

• Transformer:


 Reduces primary line medium voltage down to low voltage service level

Secondary Bank:

 Conductor lines carrying electricity at low voltages to multiple service points

Service Lines:

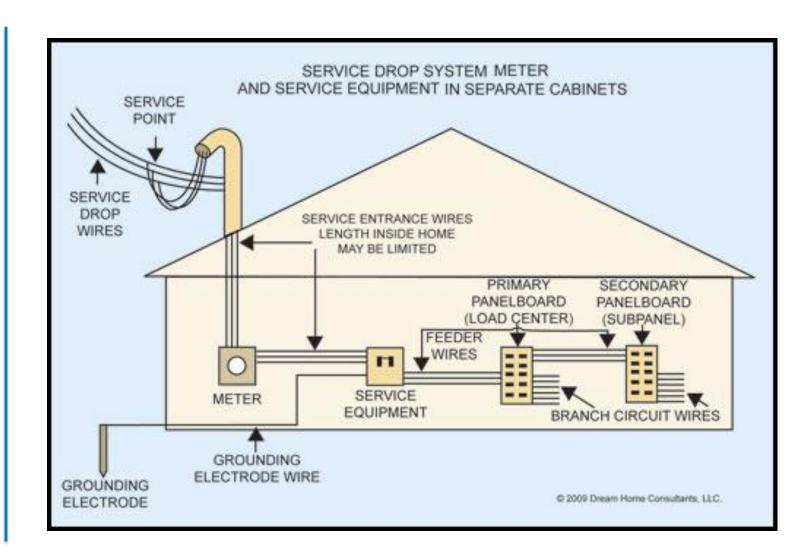
 Conductor lines providing electric service to individual locations

Electric Service Equipment

Meter:

Measures energy flow in kWh

• Primary Panel:


 Electric panel with circuit breakers protecting branch circuits and subpanels

• <u>Secondary Panel:</u>

 Second electric panel fed from primary panel

Branch Circuit:

 Individual circuits feeding various loads with overcurrent protection through a single circuit breaker

Design Considerations and Construction Costs

- What should I be planning for?
 - EVSE Requirements, Possible trenching, Service upgrades
- How much will it cost to build?
 - EVSE Cost/Unit, Installation Cost/Port

Design and Construction

EVES Requirements

- Level 1 (15 Amps)
 - Single 20 A Breaker
 - 1.8 kW (120 V)
- Level 2 (32 Amps)
 - Double pole 40 A breaker
 - 7.7 kW (240 V)
 - 6.7 kW (208 V)

Site Equipment

- Transformer Capacity
 - Distribution transformer must be large enough to supply peak load demand
- Main Breaker
 - Must be sized large enough to supply the peak coincident demand from all branch circuits
- Panel Capacity
 - Spare breaker positions must be available
- Circuit Breaker
 - NEC 625.41: overcurrent protection shall be rated for 125% of the maximum EVSE load

Design and Construction

EVSE Cost/Unit

- \$400 \$6,500
 - Wall Mount/Pedestal
 - Data Collection/Transactions
 - Managed Charging

Installation Cost/Port

- \$600 \$12,700
 - Interconnection
 - Service Upgrades
 - Labor
 - Trenching (~\$100/ft)

Non-Residential EVSE Costs

Average Level 2 Installation Costs per Port								
Source	All Non-residential	Fleet	Workplace	Public				
EV Project (2011-2013)	\$2,979	N/A	\$2,223	\$3,108				
2013 EPRI Report	\$3,005	\$2,018	\$2,704	\$3,343				

Site Assessment Overview

- Vehicle and EVSE Selection
 - PHEV vs BEV, Range, Level 2 vs DCFC...
- Install Location
 - Parking Availability, Install Considerations
- Equipment Upgrades
 - o Service Panel, Circuit Breakers, Distribution Transformer

Site Assessment Example 1 – Vehicle Selection

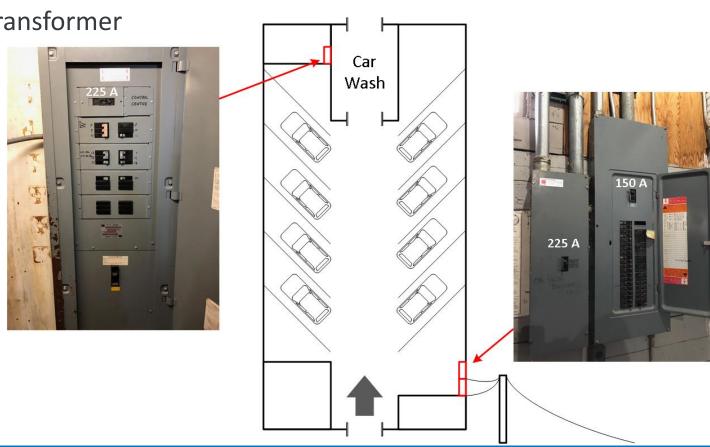
- Requirements
 - 5 LD Vehicles
 - Operated: 5 days/week 9-5
 - Average daily travel: 50 miles
 - Occasional longer trips
 - unpredictable schedule
 - AWD preferred
- EV Selection
 - Mitsubishi Outlander PHEV
 - Range 22/310 miles
 - AWD SUV

Design Note

The Outlander's 12 kWh battery can be fully recharged in 3.5 hours with a Level 2 EVSE. This is limited by the 3.6 kW on-board charger.

Site Assessment Example 1 – Electric Service and EVSE Requirements

- Electric Service
 - Two 1-phase 3-wire services
 - Each from a 37.5 kVA transformer



Site Assessment Example 1 – Electric Service and EVSE Requirements

- Electric Service
 - Two 1-phase 3-wire services
 - Each from a 37.5 kVA transformer
 - Lighting Circuit
 - 120/240 V, 150 A
 - Car Wash Circuit
 - 120/240 V, 225 A

Design Note

Service Panels have an enclosure rating, which is separate from and should be greater than or equal to the main breaker rating.

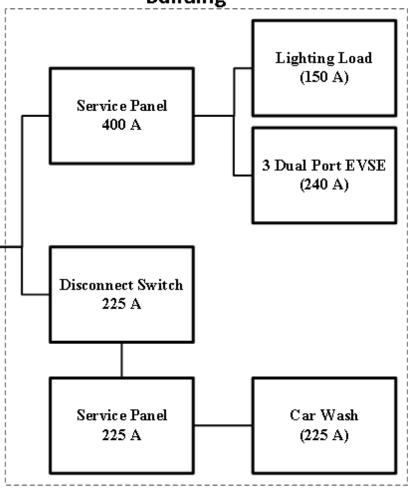
Site Assessment Example 1 – Electric Service and EVSE Requirements

- Electric Service
 - Two 1-phase 3-wire services
 - Each from a 37.5 kVA transformer
 - Lighting Circuit
 - 120/240 V, 150 A
 - Car Wash Circuit
 - 120/240 V, 225 A $240 V \times 32 A = 7.6 kW$
- EVSE requirements $7.6 \, kW \times 6 \, port = 46.2 \, kW$
 - Three level 2 dual port units
 - Six 240 V, 32 A (7.6 kW) ports
 - 46.2 kW additional load

Design Note

Wall mount units and dual port units offer the most affordable unit prices per port.

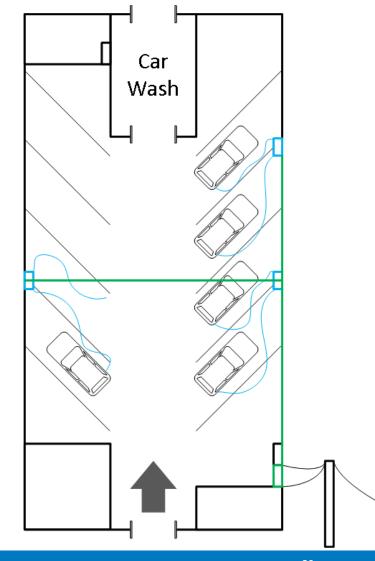
Site Assessment Example 1 – Equipment Upgrades and Installation


Lighting Circuit Building 400 A service panel Twelve double-pole 40 A breakers Service Panel Transformer Cluster-mount Upgrade

Three 100 kVA Transformers

Utility Distribution Transformer Bank Lines $3 \times 100 \text{ kVA}$

Design Note


The sum of all branch circuits may exceed the main breaker rating. However, if all loads have a high coincident peak, it may cause nuisance tripping of the main breaker.

Site Assessment Example 1 – Equipment Upgrades and Installation

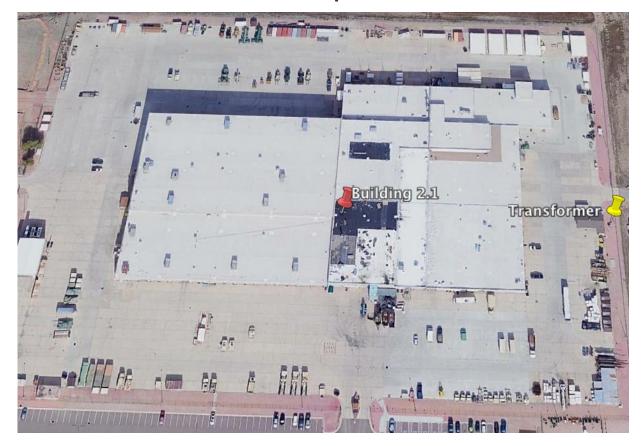
- Lighting Circuit
 - 400 A service panel
 - Twelve double-pole 40 A breakers
 - Transformer Clustermount Upgrade
 - Three 100 kVA Transformers
- Three level 2 dual port units
 - Wall mount installation
 - Lower cost units
 - Avoids trenching
 - Conduit Raceway
 - 150 feet of conduit
 - Installed along garage walls and ceiling

Design Note
Avoid trenching when possible.
~\$100/ft

Site Assessment Example 2 – Vehicle Selection

- Requirements
 - 6 LD Vehicles
 - Operated: 6 days/week 9-5
 - Average daily travel: 100 miles
 - Occasional longer trips
 - Consistent parking location
- EV Selection
 - Chevrolet Bolt BEV
 - Range 310 miles
 - LD subcompact sedan

Design Note

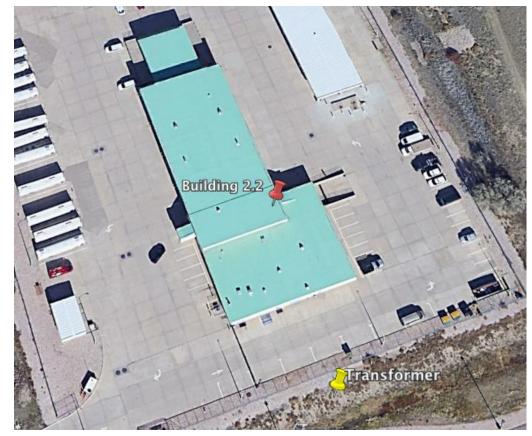

The Bolt's 60 kWh battery can be fully recharged in 8.3 hours with a Level 2 EVSE. This is limited by the 7.2 kW on-board charger.

Site Assessment Example 2 – Electric Service and EVSE Requirements

- Electric Service
 - o Building 2.1
 - 1500 kVA transformer
 - 208Y/120 V three-phase service

Design Note

Installing a new electric service may be cheaper than using existing infrastructure, particularly when the service panel is located far from the potential EVSE site.



Site Assessment Example 2 – Electric Service and EVSE Requirements

- Electric Service
 - o Building 2.1
 - 1500 kVA transformer
 - 208Y/120 V three-phase service
 - Building 2.2
 - 300 kVA transformer
 - 208Y/120 V three-phase service

Design Note

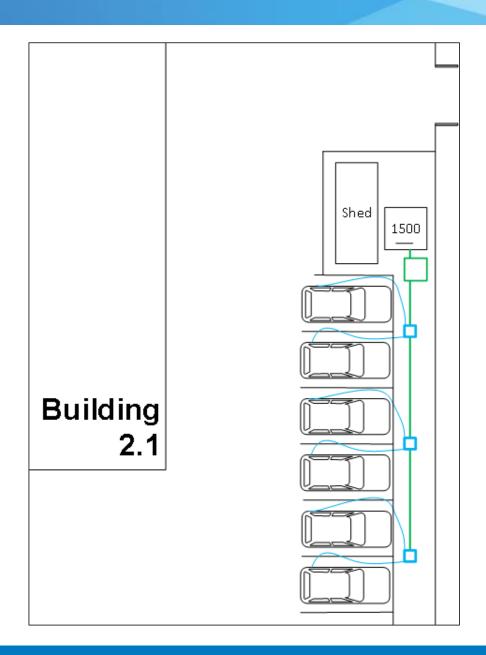
Some three-phase services are provided 480 V.
In these circumstances a "step-down"
transformer is required to supply the standard
208Y/120 V service.

Site Assessment Example 2 – Electric Service and EVSE Requirements

- Electric Service
 - o Building 2.1
 - 1500 kVA transformer
 - 208Y/120 V three-phase service
 - Building 2.2
 - 300 kVA transformer
 - 208Y/120 V three-phase service
- EVSE Requirements
 - Three level 2 dual port units
 - Six 240 V, 32 A (7.7 kW) ports
 - 46.2 kW additional load

Design Note

When installing pedestal units, trenching and a concrete surface are required. Concrete pad installations may also be necessary.

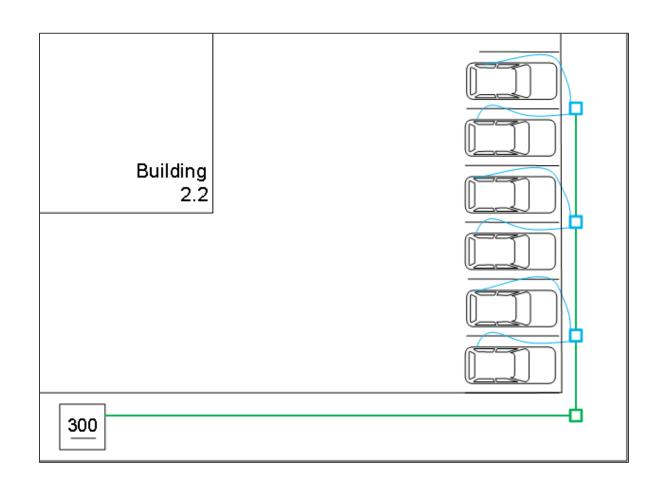


Site Assessment Example 2 – Site Selection

- Building 2.1
 - Large transformer capacity
 - Minimal trenching required

Design Note

Locating EVSE close to the utility "point of interconnection" not only saves on trenching, but also limits the length of conduit and wire needed

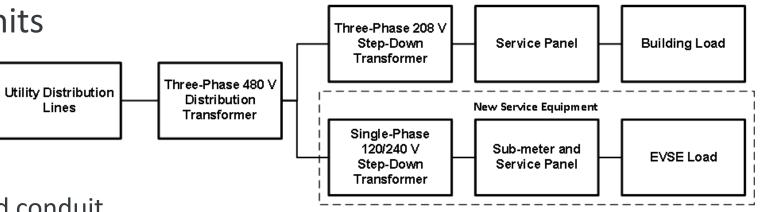


Site Assessment Example 2 – Site Selection

- Building 2.1
 - Large transformer capacity
 - Minimal trenching required
- Building 2.2
 - Small transformer capacity
 - Extra 100' trenching required

Design Note

Trenching costs are typically estimated at \$100/ft. However, industrial strength concrete parking lots could create higher costs.



Site Assessment Example 2 – Equipment Upgrades and Installation

- New electric service
 - Distribution transformer load analysis
 - New Step-Down Transformer
 - 120/240 V, 100 kVA
 - New 400 A service panel
 - Twelve double-pole 40 A breakers
- Three level 2 dual port units
 - Pedestal installation
 - Concrete pad
 - Conduit Raceway
 - 50 feet of trenching and conduit

Design Note

When trenching and installing conduit, if space permits, additional capacity may be planned for with additional conduit and wiring "stub outs".

NATIONAL RENEWABLE ENERGY LABORATORY

Choose vehicles and technology.

> **LSEV PHEV BEV**

Choose EVSE type and quantity.

> SAE Level 1 SAE Level 2 CHAdeMO

Determine necessary upgrades.

> Service Panel Circuit Breakers

Contact utility rep regarding new load.

> **Grid impacts** Service voltage Transformer

Install new infrastructure.

Breakers Conduit/conductors **EVSE**

Thank You

www.nrel.gov

Jesse Bennett

Phone: 303.384.6423

Email: jbennett@nrel.gov

